Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation

Summary

Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N₂ into NH₃. In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.

Introduction

Nitrogen is one of the most difficult-to-acquire macronutrients in the biosphere. Its most abundant form, dinitrogen (N₂), can only be accessed by a small and phylogenetically diverse group of bacteria and archaea that synthesize the enzyme nitrogenase (Dos Santos et al., 2012). This metalloenzyme complex is unique in its capacity to catalyze the reduction of N₂ to ammonia, one of the most energy- and catalytically demanding reactions in biology. Non-nitrogen fixers must ultimately obtain their nitrogen from either free-living or symbiotic diazotrophic bacteria, from geological/atmospheric events (such as volcanoes or lightning), or, since the early 20th century, from polluting and costly synthetic chemical fertilizers (Gruber & Galloway, 2008).

Amid the different strategies to get ahead in the competition for assimilable nitrogen, the endosymbiosis established 60 million years ago between legumes and rhizobia is one of the most sophisticated and best studied (Oldroyd, 2013; Downie, 2014). Rhizobia are diazotrophic bacteria that, through a complex and partner-specific signaling process, promote the development of root nodules (Oldroyd, 2013; Xiao et al., 2014). These bacteria colonize the nodule cells establishing organelle-like structures, the symbiosomes, in which rhizobia differentiate into bacteroids surrounded by the symbiosome membrane, originating from the host cell (Wang et al., 2010; Kereszt et al., 2011; Ivanov et al., 2012). Only fully mature bacteroids synthesize nitrogenases, which in turn produce the ammonia that will be delivered to the host plant in exchange for other mineral nutrients and photosynthates (Udvardi & Poole, 2013). Efficient nutrient exchange is essential for the maintenance of the symbiotic partnership. When nitrogen delivery to the host is stopped or no longer necessary, the symbiosis is aborted (Hahn et al., 1984; Goh et al., 2019). Similarly, if the host plant does not provide photosynthates or mineral nutrients (such as transition metals, phosphate, or sulfate), the endosymbiont dies and nitrogen fixation is interrupted (Watson et al., 1988; Krusell et al., 2005).

Transition metals, such as iron, molybdenum, copper, or zinc, are among those nutrients that must be transferred from the host to the symbionts (Johnston et al., 2001). These elements are catalytic cofactors and structural components of around a third of the proteins of a typical cell, participating in almost every biological process (Finkelstein, 2009; Foster et al., 2014). Nodule cells have an even greater demand since many of the key enzymes of symbiotic nitrogen fixation are highly expressed metalloenzymes. Iron and molybdenum are components of the ubiquitous bacteroid-expressed Fe, Mo-nitrogenase metallic clusters (Fe₄S₄, Fe₃S₇ or...
P-cluster, and FeMo-co Fe₇-S₄-C-Mo-homocitrate; Burén et al., 2020). Moreover, cytosolic iron-containing leghemoglobin is used to maintain the microaerobic conditions required to balance the strictly aerobic bacteroid metabolism with the oxygen-sensitive nitrogenase (Appleby, 1984; Ott et al., 2005). To be able to sustain oxidative respiration in this low-oxygen environment, bacteroids synthesize specialized iron- and copper-dependent cytochrome oxidases with high O₂ affinity (Preisig et al., 1996) that are essential to satisfy the high energy demands of symbiotic nitrogen fixation. Other metalloproteins are involved in signal transduction (such as NADPH-oxidases) or free radical control (catalases or superoxide dismutases, for instance), among several other processes in the symbiosis (Dalton et al., 1998; Rubio et al., 2004; Arthikala et al., 2014). The importance of metals for this symbiotic nitrogen fixation cannot be overstated considering that nodules represent c. 5% of the total plant biomass, but could contain 25–30% of the total plant transition metal content (Burton et al., 1998; O’Hara, 2001). Therefore, it is not unexpected that metal deficiency in soils negatively impacts nodulation and symbiotic nitrogen fixation (O’Hara et al., 1988; Tang et al., 1991, 1992; Johnston et al., 2001). In this review, we present our current understanding of transition metal delivery to legume nodules, together with the outstanding questions in the area, expanding on previous revisions focused just on one element (Brear et al., 2013; Day & Smith, 2021) or dated before the recent advances on our understanding of metal transport in nodules (Johnston et al., 2001; González-Guerrero et al., 2014).

Metal uptake from soil

Transition elements, particularly iron and zinc, are limiting nutrients for plants in many regions, including some of the main agricultural areas of the world (Chen & Barak, 1982; Alloway, 2008). This is typically the consequence of low metal bioavailability in calcareous soils, rather than their low abundance. Low metal availability is also an added challenge for nitrogen-fixing nodules, which rely on the plant for metal supply.

Plants have developed precise and exquisitely controlled mechanisms for soil metal uptake and delivery/distribution within the plant (Mendel, 2011; Olsen & Palmgren, 2014; Connorton et al., 2017; Andresen et al., 2018). As dicots, legumes possess a metal uptake network similar to that of Arabidopsis thaliana (Fig. 1). The rhizosphere is acidified by H⁺-ATPases that increase metal solubility (Santi & Schmidt, 2009). Then, ferric reductase oxidases (FRO) reduce Fe₃⁺ and Cu⁺⁺ to more soluble Fe²⁺ and Cu²⁺ (Robinson et al., 1999; Bernal et al., 2012), which are transported into the epidermal cell through specific transporters, typically of the ZRT1-, IRT1-like protein (ZIP) and natural resistance-associated macrophage protein (NRAMP) families for divalent cations and copper transporter (COPT) family for Cu⁺ (Vert et al., 2002; Sancenon et al., 2004; Castaings et al., 2016). Specifically in legumes, FRO1-mediated reduction of Fe³⁺ seems to be the main contributor for iron uptake (Grusak et al., 1990a; Waters et al., 2002; Andaluz et al., 2009). However, the identity of the specific transporters responsible for legume metal uptake from soil still remains unsolved due to a lack of localization data, although a number of publications have studied legume ZIP (López-Millán et al., 2004; Stephens et al., 2011), COPT (Wang et al., 2021), or NRAMP transporters (Qin et al., 2017). Nevertheless, it has been proposed that pea RIT1 protein would be functionally equivalent to A. thaliana IRT1 (Cohen et al., 2004). In plants, most metal uptake genes are typically upregulated under metal deficiency (Colangelo & Guerinot, 2004; Bernal et al., 2012; Lilay et al., 2021). Nodulation elicits a similar response in legumes, as the plant prepares for the increased metal demand of symbiotic nitrogen fixation (Terry et al., 1991).

While phenylpropanoid-derived coumarins have been identified as important elements for plant iron uptake (Rodríguez-Celma et al., 2013; Fourcroy et al., 2016; Tsai et al., 2018), they do not seem to play the same role in the model legume Medicago truncatula. In fact, releasing coumarins to the rhizosphere might be disadvantageous to legumes, as it could lead to decreased expression of rhizobial nodulation genes (Peters & Long, 1988). Comparative transcriptomic analysis of iron-deficient roots of Arabidopsis and M. truncatula indicates that flavins could functionally substitute coumarins in legume species (Rodríguez-Celma et al., 2013). However, further characterization of the legume iron deficiency response, of their root exudates, and of the combined effect of flavins/flavonoids on nodulation must be carried out.

Metal delivery to nodules

Iron and likely other transition elements travel from the epidermis to the stele following three alternative pathways: the symplastic pathway, the apoplastic pathway, and the less-characterized transcellular pathway (Barberon & Geldner, 2014; Curie & Mari, 2017; Fig. 1). In the first one, metals within the epidermal cell will transit through plasmodesmata to the root pericycle cells. In the apoplastic pathway, metals will move from the epidermis to the stele following a concentration gradient. Along the way, some of these cations can be stored associated with negatively charged cell walls to be used under metal-deficient conditions (Curie & Mari, 2017). Finally, the transcellular pathway would require the polar distribution of efflux and uptake transporters to ensure a directionality of metal transport, as it has been illustrated for boron (Barberon & Geldner, 2014). Metals using either of the latter two pathways would be largely stopped at the Caspian strip in the endodermis. Delivering these metals to sink organs would require an additional step of metal import into the endodermal cells. For long-distance transport, metals are released to the xylem, through which they travel as metal complexes and are delivered to the shoots.

Since nodules are in close contact with the soil, it could be expected that metals are acquired directly through the nodule epidermal cells, using the mechanisms described previously. However, diffusion barriers, similar to a Caspian strip, surround the nodule cortical cells (Hartmann et al., 2002; Minchin et al., 2008), limiting metal transit to the symplastic pathway to reach the nitrogen-fixing cells. This model of metal transport from the nodule-soil interface would be compatible with the developmental pattern of determinate type nodules (such as those of Phaseolus and Glycine), in which the whole nodule matures quite
uniformly, and metal demands would be similar throughout the nodule (Hirsch, 1992). However, not all legumes develop nodules in this way; some (such as Medicago or Pisum) retain their apical meristem, which leads to a continuous, indeterminate growth and to the establishment of different developmental zones along the nodule axis (meristem, infection/differentiation zone, interzone, fixation zone, and senescent zone; Vasse et al., 1990; Fig. 1). Each of these areas would have different metal demands depending on the stage of bacteroid differentiation and nitrogenase synthesis. In indeterminate-type nodules, metal delivery should be more focused on the regions where symbiosis is being established, where oxygen concentration is being reduced and nitrogenase synthesized. To this end, a more targeted, vascular, metal delivery strategy would be advantageous. Accordingly, metals would be primarily delivered to

Fig. 1 Metal delivery to indeterminate-type nodules. Diagram illustrating how transition metals are introduced from soil, a process that may require reduction and the use of flavins. Transition metals are delivered to the vasculature following through three possible pathways: transcellular (1), apoplastic (2), or symplastic (3). Upon reaching the endodermis, transcellular and apoplastic metals have to be transported into the cells. Transition metals are then released to the vasculature, where they bind to metal carriers (e.g. citrate or nicotianamine) to be delivered to the infection/differentiation zone of the nodules.
the differentiation/early fixation zone of the nodules, where metalloprotein synthesis, particularly nitrogenase components, is very active (Vasse et al., 1990). Furthermore, vascular metal delivery allows the coordination of metal partitioning between leaves and nodules, arguably the two main metal sinks in the legume vegetative stage. Unfortunately, no isotopic studies have been carried out to date that would allow us to discern between vascular vs epidermal metal delivery pathways, although these methodologies have been used for non-nodulated legumes in the past (Oliveira et al., 2014). However, insights have been gained from metal imaging and metal transporter localization studies.

Synchrotron-based X-ray fluorescence studies on elemental distribution in the indeterminate nodules formed by M. truncatula support the targeted vascular metal delivery hypothesis (Rodríguez-Haas et al., 2013), as iron localization changes in the different nodule developmental zones. In the differentiation zone, iron accumulates in the apoplast, whereas in the fixation zone, iron is mostly present within the rhizobia-containing cells, matching the symbiosome distribution. These observations suggest that iron, and likely other metal nutrients, is released from the vasculature to the nodule infection/differentiation zone and later incorporated into the symbiosomes of rhizobia-infected cells as the fixation zone develops (Fig. 1). Further evidence for this model comes from the localized expression in the late differentiation zone-early fixation zone of many of the transporters involved in metal entry into rhizobia-containing cells (Tejada-Jiménez et al., 2015; Abreu et al., 2017; Senovilla et al., 2018), as well as the phenotypes of mutants in nodule vascular metal transport (Castro-Rodríguez et al., 2020; Escudero et al., 2020a), detailed in the following sections. Furthermore, vascular transport is also important in determinate type nodules, as mutants causing iron retention in the xylem result in less iron available to the nodule (Takanashi et al., 2013).

However, other authors have suggested that under some circumstances, such as iron deficiency, direct metal uptake from the soil surrounding the nodules could be possible (Slatni et al., 2012). This is based on the detection of proteins immunoreactive to an antibody raised against A. thaliana IRT1 in the nodule cortex of common bean (Phaseolus vulgaris). However, these immunossays do not necessarily detect the orthologue of Arabidopsis IRT1, the protein responsible for iron uptake from soil. The antibodies raised could be detecting any other ZIP protein that could be transporting not only Fe$^{2+}$, but also Zn$^{2+}$, or Mn$^{2+}$ into other compartments/cell layers. In addition, no epidermal localization of this putative ZIP protein could be clearly discerned in the images. Overall, we consider that stronger transporter localization data and/or isotopic tracing studies are still required to conclude the existence of direct metal uptake from soil by the nodule epidermis.

Little is known on the specifics (genes, chelates, or the tissues involved) of vascular transport of metals to nodules. Considering that most of the metals are acquired via uptake into root cells, it would be expected that a system similar to the one used to transport metals to the shoot would be in place (Puig & Peñarrubia, 2009; Conte & Walker, 2011). This means that metals would traffic through the pericycle into the xylem where they would form complexes with citrate and other organic acids (Flis et al., 2016). However, studies using fluorescent probes to trace water transport in the root-nodule system indicate that the nodule core is not apoplastically connected to the root, and that water is distributed to the nodules via the phloem (Bederska et al., 2012). Once in the nodule, solutes will move to the nodule endodermis, which is apoplastically disconnected from the inner nodule layers. Additional support for a symplastic delivery of metals to nodules is the prominent role of nicotianamine (NA) and metal-NA transporters of the Yellow Stripe1-Like (YSL) family in symbiotic nitrogen fixation (Fig. 2). NA is the preferred metal chelator in the phloem (Flis et al., 2016), where it can bind to iron, copper, or zinc. These NA–metal complexes would be introduced in the cell by YSL proteins (Curie et al., 2008). Castro-Rodríguez et al. (2020) showed that M. truncatula YSL3 protein is required for iron and zinc delivery to nodules. Loss of this transporter results in less iron reaching the fixation zone of the nodule, and in zinc being retained in the vasculature. More recently, Wu et al. (2023) have proposed that soybean YSL7 could also be involved in iron-NA transport to nodules at the vascular levels. This is largely based on the ability of GmYSL7 to complement a fer3 fer4 iron uptake yeast mutant when iron is theoretically provided as a NA complex, as well as on the increase in iron toxicity of a cce1 iron detoxification yeast mutant when using the same substrate. However, iron–NA complexes are difficult to form in vitro, and free iron, not bound to NA, could be abundant. This is suggested by having similar results when transforming the yeast mutants with Fe$^{2+}$-transporting IRT1. Moreover, iron-NA-dependent complementation could not be achieved by other laboratories working on the same GmYSL7 or the M. truncatula orthologue (Castro-Rodríguez et al., 2021; Gavrin et al., 2021; see below). Regardless of the specific role of GmYSL7, the overall involvement of YSL transporters in metal allocation to nodules is further supported by the need of NA synthesis in nodules by NA synthases (NAS). Nitrogenase activity is severely reduced in M. truncatula nas2 mutants (Escudero et al., 2020a). As also found in ysl3 mutants, iron is mostly retained in the apical zone (infection/differentiation) in nas2 mutants, with less of it reaching the fixation zone. MtnAS2 mutation also changes iron speciation in the fixation zone as observed with X-ray absorption spectroscopy, with a reduction in the percentage of iron associated with sulfur (Fe-S clusters, Fe-glutathione, …) in favor of an increase in Fe$^{2+}$ species associated with O/N (typically organic acids or amino acids). Interestingly, no significant differences in iron coordination are observed in the vasculature, suggesting that other NAS may be compensating for the lack of NAS2.

Molybdenum cannot be delivered using a NA/YSL system, in contrast to iron, copper, and zinc. This is the consequence of molybdenum being most commonly available in the biosphere as molybdate oxoanion rather than as a cation, thereby requiring alternative transporters. In plants, high-affinity molybdate transport is carried out by proteins of the molybdate transporter1 (MOT1) family (Tejada-Jimenez et al., 2013). To support the enhanced demands of nitrogen fixation, the MOT1 family has expanded in legumes compared with other dicots (Tejada-Jiménez et al., 2017). While A. thaliana encodes two MOT1 genes, M. truncatula has five family members. One of them, MOT1.2 is
localized in the root and nodule vasculature (Fig. 2). MOT1.2 is responsible for molybdenum delivery to nodules. Evidence for this comes from the reduction of nitrogenase activity and the lower molybdenum content of MOT1.2 mutant nodules (Gil-Díez et al., 2019).

Both YSLs and MOT1 proteins introduce their metal substrate into the cytosol (DiDonato et al., 2004; Tejada-Jiménez et al., 2007). Consequently, they cannot be responsible for metal release to the nodule apoplast. To date, no metal efflux transporter directly involved in metal release from nodule vasculature has been identified. No molybdate efflux transporter is currently known, and in the available transcriptomic databases, there is no evidence of any P1B-ATPase induced by nodulation (Benedito et al., 2010; Roux et al., 2014), transporters typically responsible for zinc or copper efflux (Hussain et al., 2004; Andrés-Colás et al., 2006). For iron, VI1-like (VTL) proteins and ferroportins could be carrying out this role, since they are able to extrude iron out of the cytosol as shown in biochemical assays in yeast and mammalian cells.
respectively (Li et al., 2001; Drakesmith et al., 2015). Recently, nodule-specific *M. truncatula* ferroportin FPN2 was observed in nodule vascular and nitrogen-fixing cells (Escudero et al., 2020b). However, MtFPN2 was located in the endoplasmic reticulum of endodermal cells, and not in the plasma membrane, thus barring its participation in the direct release of iron into the nodule apoplast. Alternatively, FPN2 could mediate iron accumulation in endomembrane vesicles to be released by exocytosis to the nodule apoplast. Supporting this role is the change in iron speciation in the vasculature of mutant nodules, with a 50% decrease of Fe\(^{2+}\) in the apoplast. Molybdate (Tejada-Jiménez et al., 2020) binds Fe\(^{3+}\) (Rellán-Alvarez et al., 2010). However, NRAMP proteins exclusively transport divalent metals, such as Fe\(^{2+}\) (Nevo & Nelson, 2006). Therefore, to account for MtNRAMP1 function, the existence of plasma membrane ferric reductases should be expected. However, no candidate has been proposed to date.

The expression patterns of genes encoding these metal transporters also show that metal uptake occurs at specific developmental stages. MtNRAMP1, MtCOPT1, and MtZIP6 are mainly produced in the differentiation-interzone-early fixation zones of the nodules (Tejada-Jiménez et al., 2015; Abreu et al., 2017; Senovilla et al., 2018). This is the region where apoplastic metals would be introduced into nodule-core cells, consistent with the proposed model for metal delivery to nodules (Rodríguez-Haas et al., 2013). By contrast, molybdate uptake, required only for FeMo-co synthesis, occurs at a later stage, as indicated by the expression of *MtMOT1.3* in interzone and fixation zones (Tejada-Jiménez et al., 2017), the region where O\(_2\) levels drop, and nitrogenase is synthesized (Vasse et al., 1990; Soupène et al., 1995).

Interestingly, out of these four transporters, only MtCOPT1 and MtMOT1.3 are nodule-specific. MtZIP6 and MtNRAMP1 are also expressed in roots. This could illustrate how the plant metal homeostasis network has accommodated nodulation. Nodule cells have a higher-than-average requirement for iron and molybdenum (Johnston et al., 2001). However, while iron is widely used in plant processes (Connorton et al., 2017), molybdenum is part of just five plant proteins, mostly expressed in shoots (Mendel, 2011; Tejada-Jiménez et al., 2013). The existence of a nodule-specific MOT1 protein might be taken to indicate that the increased demand for molybdenum could only be provided by gene duplication rather than by a simple upregulation of a preexisting transporter. Alternatively, it could also be argued that the evolution of nodule-specific transporters is still underway for iron and zinc uptake. This idea is supported by a lack of redundancy of transporter genes in nodules in contrast to roots and shoots (Waters et al., 2006; Klatte et al., 2009; Olsen & Palmgren, 2014; Sinclair et al., 2018). In most instances, mutating just the gene of interest is enough to have a drastic effect on nitrogen fixation and nodule metal homeostasis, indicating a partial specialization to participate in symbiotic nitrogen fixation.

Metal transfer to symbiosomes

Once within a cell, metals have to be allocated to different cellular compartments and delivered to a plethora of metalloproteins. This does not only include symbiosomes, where iron, molybdenum, and copper are essential for nitrogen fixation (Presig et al., 1996; Burén et al., 2020), but to host-dependent symbiosis-related and in general housekeeping reactions. Considering that there is little free, hydrated, metal in the cytosol (Outten & O’Halloran, 2001; O’Halloran & Finney, 2003; Waldron & Robinson, 2009), specific systems for sorting metals among the different cellular...
compartments must be in place. Although they remain unknown, they would involve yet-to-be-characterized metallochaperones connecting the different donor and acceptor proteins (Fig. 2). Similar mechanisms are in place to control subcellular copper allocation in other bacterial and eukaryotic cells (OO’Halloran & Culotta, 2000; Tottey et al., 2002). Recent evidence indicates that nodules have specific Cu–chaperones that are able to metallate a subset of the cell copper proteome (Navarro et al., 2023). In addition to this metal pool, transition metals would also bind to NA, considering that NAS2 is highly expressed in all nodule cells (Escudero et al., 2020a). Future work must focus on further characterization of nodule metallochaperones, on determining new metalloproteins linked to them, and on the role of the intracellular metal-NA pool to understand how intracellular metal sorting is achieved.

Iron translocation across the symbiosome membrane also requires citrate, as indicated by the localization of MtMATE67 in this membrane as well (Kryvoruchko et al., 2018). This is consistent with data from rhizobia and bacteroid iron uptake that showed citrate as their preferred iron form (Moreau et al., 1995; Benson et al., 2005). Since MtMATE67 does not transport iron–citrate complexes, iron must be extruded by another protein. However, citrate efflux and iron efflux are linked by the activation of MATE67 by iron (Kryvoruchko et al., 2018).

VTLs and ferroportins participate in iron transport across the symbiosome membrane (Fig. 2). Nodules express specific iron exporting VTLs required for nitrogenase activity (Hakoyama et al., 2012; Brear et al., 2020; Liu et al., 2020; Walton et al., 2020). Soybean produces two nodule-specific VTL (VTL1a and VTL1b) proteins, both with similar expression patterns, located in the symbiosome membrane (Brear et al., 2020; Liu et al., 2020). Mutation of both genes results in a severe reduction of nitrogenase activity and altered iron distribution (Liu et al., 2020). However, VTL1b showed lower iron transport capabilities in yeast than VTL1a, which could indicate that they may have slightly different roles or different substrate affinities. In M. truncatula, the two nodule-specific VTLs have a different distribution. Only one of them, MtVTL8, is located in the symbiosomes (Walton et al., 2020). However, the role that the second VTL plays in soybean symbiosomes could be played by the ferroportin MtFPN2 in M. truncatula (Escudero et al., 2020b; Fig. 2). As with symbiosome VTL mutants, eliminating MtFPN2 expression leads to white, nonfunctional nodules, with a lower iron content. Moreover, iron speciation in nodules is also altered. These phenotypes are not a consequence of the role of MtFPN2 in the endoplasmic reticulum of endodermal cells (described above), since expressing MtFPN2 solely in cells in the differentiation to fixation zones is sufficient to restore nitrogenase activity (Escudero et al., 2020b). The duplicity of symbiosome iron transporters is intriguing, and it illustrates the large iron demands of nitrogen fixation. It also represents another layer of control of iron nutrition in nodules, particularly in M. truncatula, in which different transporters could have access to different iron pools or be under different regulations. Alternatively, Chu et al. (2022) propose that L. japonicus SEN1 (a VTL homolog) is a molybdate transporter responsible for molybdenum allocation to symbiosomes. However, this claim needs to be substantiated by stronger biochemical evidence, given that all previously characterized members of the family have been strongly linked to iron efflux. Furthermore, while most metal transporters can use different metal substrates, these typically have the same charge (e.g. divalent metals, not a cation vs anion), and the possibility of a molybdenum cation as a substrate is remote.

Finally, iron might also be transferred to rhizobia before the colonization of nodule cells. MtVTL4 is the second M. truncatula nodule-specific VTL. This protein is present in the plasma membrane of cells in the infection zone and in the infections threads (Walton et al., 2020), where it could act to transport iron into the apoplastic or into the infection threads that guide the rhizobia from the plant surface to the nodule cells. Although rhizobia are not able to synthesize nitrogenase at this stage of infection, mutation of VTL4 results in a 50% reduction on nitrogenase activity. The precise cause of this is not known, but iron acquired at this stage could serve as a primer to initiate nitrogenase synthesis, or to produce some of the enzymes required for nodulation, including those involved in resistance to the reactive oxygen species produced by the plant during infection (Syska et al., 2019).

In contrast to the advances in our understanding of iron transfer to symbiosomes, less is known on how other transition metals are delivered (Fig. 2). Molybdenum is provided as molybdate, as indicated by the lower nitrogen fixation rates of mod rhizobial mutants, and the dependence on sulfate (Delgado et al., 2006). However, no molybdate efflux proteins have been identified yet, other than the proposed role for LjSEN1 (see above; Chu et al., 2022). Alternatively, molybdate delivery into symbiosomes could be carried out by sulfate transporters, given the importance of sulfur for nitrogenase cofactor assembly and the similar chemical nature of molybdate and sulfate (Krusell et al., 2005). For zinc and copper, no evident HMA family member can be selected based on the available transcriptomic data. Alternatively, Metal Tolerance Protein (MTP) transporters could mediate zinc or copper delivery (Kolaj-Robin et al., 2015) but, so far, the one most highly expressed in nodules is located in the endoplasmic reticulum (León-Medivilla et al., 2018). Early work on metal transporters in symbiotic nitrogen fixation proposed that Glycine max ZIP1 protein could be introducing zinc into the symbiosomes (Moreau et al., 2002). However, ZIP proteins transport metals in the opposite direction (Zhang et al., 2017), and this means that GmZIP1 is likely to have an alternative role.

GmZIP1 is not the only transporter of a family mediating cytosolic metal influx located in symbiosomes (Moreau et al., 2002); iron-transporting NRAMP protein GmDMT1 is also present in the same compartment (Kaiser et al., 2003). Both proteins are candidates for removing metals from the symbiosome. Similarly, rhizobial transporters MbA and Nia1 are also synthesized in nodules, where they would extrude iron out of the bacteroid (Zielazinski et al., 2013; Walton et al., 2020; more information on rhizobial metal transporters can be found in the recent review by Abreu et al., 2019). The combination of these systems indicates that there is backwards transport of metals, contrary to increasing metal content of bacteroids for nitrogen
fixation. One possible role for this system is being a ‘relief valve’ to prevent metal toxicity in bacteroids. This would mean that bacteroids are under a certain risk of being overloaded with metals that would then need to be detoxified. The hypothesis of a rhizobial iron overload is also consistent with the role of NCR247 peptide in bacteroid iron regulation (Sankari et al., 2022). NCRs are a large family of cysteine-rich peptides that in certain legumes are essential for bacteroid maturation (Van de Velde et al., 2010). These peptides are synthesized by the host cell and transferred to the bacteroid, where they exert their role. Particularly, NCR247 has been associated with bacteroid division, translation, and protein stability (Farkas et al., 2014). Furthermore, NCR247 is able to bind heme, a repressor of Irr. In the absence of heme, Irr represses RirA repressor transcription, which in turn activates the transcription of several rhizobial iron uptake genes (Chao et al., 2005). As a result, NCR247 is ‘forcing’ the bacteroid to accept a larger amount of iron, raising the risk of toxicity, but increasing iron availability for nitrogenase cofactor synthesis. Moreover, these results illustrate a mechanism of host-controlled bacteroid metal homeostasis that would coordinate both symbionts. Other NCR peptides, rich in potential metal-coordinating cysteine residues, could conceivably work as well in metal allocation and regulation in bacteroids.

Metal recovery during nodule senescence

Nodules do not remain functional forever. As the plant enters the reproductive stage, nodules senesce (Puppo et al., 2005; Van de Velde et al., 2006). Considering the prevalent low metal bioavailability in soils (Chen & Barak, 1982; Alloway, 2008), the large amounts used in nodules (Johnston et al., 2001), and the importance of transition metals for seed production and germination (Sancenon et al., 2004; Kim et al., 2006; Roschitzstdz et al., 2011), a large portion of the nodule metal content should be recycled. It is estimated that around half of the nodule iron is relocalized to the seeds when nodules senesce (Burton et al., 1998), and a similar recovery of other limiting transition elements can be expected.

The molecular mechanisms of metal recycling from nodules have not been fully characterized. Transporters such as GmDMT1 and GmZIP1, which remove metals from symbiosomes (Moreau et al., 2014; Kim et al., 2017; Kim et al., 2019; Lilay et al., 2021), nodulated legumes are expected to have additional, specific levels of control. This would require synchronizing and optimizing metal delivery to photosynthesis and nitrogen-fixing organs. Unfortunately, this area of research remains largely unexplored. Transcription factors bHLH57 and bHLH300, orthologous to A. thaliana iron-controlling transcription factors FIT and bHLH38/39/100/101 (Riaz & Guerinot, 2021), have been shown to be involved in the regulation of iron uptake in soybean, and they are expressed in nodules (Li et al., 2018). Overexpression studies of bHLH300 in soybean nodules lead to lower iron accumulation in nodules and to reduced GmYSL7 expression (Wu et al., 2023). Other regulatory factors controlling nodule metal allocation could be encoded by the BRZ and DGL genes in pea, as indicated by the increased iron content in shoots and decreased nodulation reported in mutants of that gene (Gottschalk, 1987; Grusk et al., 1990b; Kneen et al., 1990). Interestingly, DGL has recently been mapped to an E3 ubiquitin ligase BRUTUS homolog and BRZ to an OPT3-like transporter (Harrington et al., 2023), both genes associated with metal homeostasis control in Arabidopsis (Rodriguez-Celma et al., 2019; Chia et al., 2023).

The nodulation signaling pathways and metal homeostasis control systems are connected from the early stages of nodulation; as the symbiosis is established, the plant triggers the iron deficiency response (Ferry et al., 1991). Moreover, the phenotype of plant mutants affected in metal transfer to nodules suggests the existence of metal deficiency signals originating from rhizobia-colonized cells. The plant iron deficiency response is upregulated in MtFPN2 mutants, likely a result of bacteroids not receiving sufficient iron (Escudero et al., 2020b). The existence of long-distance signaling for enhancing the supply of zinc, copper, or molybdenum nodule can be also inferred from the phenotype of opt1-1, mot1-3,1 mutants and the zip6 RNAi lines (Abreu et al., 2017; Tejada-Jiménez et al., 2017; Senovilla et al., 2018). Reduced metal uptake capabilities of nodule cells from these mutant plants somehow lead to an oversupply of metals to these nodules, which accumulate significantly higher total concentrations of metals than healthy wild-type (WT) nodules. This metal excess is typically observed in nodules with increased siderophore production (Bernal et al., 2021). The nodule apoplast (Abreu et al., 2017; Senovilla et al., 2018).

The nature of the hypothetical metal deficiency signal is not known, but YSL proteins might be involved in its transduction. In A. thaliana, it has been shown that functional YSL1 and YSL3 proteins participate in the long-distance signaling of iron deficiency to roots by a yet-to-be-defined mechanism (Kumar et al., 2017). YSL7 is a candidate to mediate metal signaling in soybean and M. truncatula nodules (Castro-Rodriguez et al., 2021; Gavrin et al., 2021). Arabidopsis, soybean, and M. truncatula YSL7 proteins transport short peptides (4–12 amino acid long) when expressed in yeast. Mutation of soybean and M. truncatula YSL7 leads to reduced nitrogen fixation rates, as well as to an altered iron homeostasis response, in addition to dysregulation of other metabolic processes. In M. truncatula, ysl7 mutants accumulate more copper and iron in nodules, a likely consequence of the overexpression of the iron uptake machinery in roots (Castro-Rodriguez et al., 2021). Both MtYSL7 and GmYSL7 transport a
similar substrate in vivo, since expressing GmYSL7 under the MtYSL7 promoter restores the WT phenotype in M. truncatula ysl7 mutants (Gavrin et al., 2021). However, these proteins have differing localizations that suggest different roles of YSL7 in determinate and indeterminate nodules. GmYSL7 was first reported as a nodule-specific protein located in the symbiosomes (Gavrin et al., 2021), where it would be introducing short peptides into the cytosol, perhaps synchronizing the metabolism of the two symbionts and fine-tuning it (Gavrin et al., 2023). Further work on the identification of the peptide(s) transported by YSL7 is critical to ascertain whether YSL7 and its substrates are involved in regulating metal allocation to symbiotic nitrogen fixation.

Table 1 Transporters involved in metal delivery to nodules.

<table>
<thead>
<tr>
<th>Accession no.</th>
<th>Name</th>
<th>Substrate</th>
<th>Nodule cell</th>
<th>Nodule zone</th>
<th>Nodule-specific</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL46698</td>
<td>LjSEN1</td>
<td>Fe²⁺</td>
<td>Rhizobia-infected cells</td>
<td>–</td>
<td>Yes</td>
<td>Hakoyama et al. (2012)</td>
</tr>
<tr>
<td>BAN59993</td>
<td>LjMATE1</td>
<td>Citrate</td>
<td>Rhizobia-infected cells</td>
<td>–</td>
<td>Yes</td>
<td>Takanashi et al. (2013)</td>
</tr>
<tr>
<td>Glyma.05g121600</td>
<td>GmVT1a</td>
<td>Fe²⁺</td>
<td>Rhizobia-infected cells</td>
<td>–</td>
<td>Yes</td>
<td>Brear et al. (2020); Liu et al. (2020)</td>
</tr>
<tr>
<td>Glyma.08g076300</td>
<td>GmVT1b</td>
<td>Fe²⁺?</td>
<td>Rhizobia-infected cells</td>
<td>–</td>
<td>Yes</td>
<td>Brear et al. (2020); Liu et al. (2020)</td>
</tr>
<tr>
<td>Glyma.11g203400</td>
<td>GmYSL7</td>
<td>Oligopeptides Fe-NA?</td>
<td>Rhizobia-infected cells</td>
<td>–</td>
<td>Yes</td>
<td>Gavrin et al. (2021); Wu et al. (2023)</td>
</tr>
<tr>
<td>Glyma.20g063100</td>
<td>GmZIP1</td>
<td>Zn²⁺</td>
<td>Undetermined</td>
<td>–</td>
<td>Yes</td>
<td>Moreau et al. (2002)</td>
</tr>
<tr>
<td>Glyma.17g18010</td>
<td>GmDMT1</td>
<td>Fe²⁺</td>
<td>Undetermined</td>
<td>–</td>
<td>No</td>
<td>Kaiser et al. (2003)</td>
</tr>
<tr>
<td>Medtr1g010270</td>
<td>MtMOT1.2</td>
<td>MoO₄²⁻</td>
<td>Endodermal cells (vasculature)</td>
<td>–</td>
<td>No</td>
<td>Tejada-Jiménez et al. (2017); Gil-Diez et al. (2019)</td>
</tr>
<tr>
<td>Medtr3g063490</td>
<td>MtYSL7</td>
<td>Oligopeptides</td>
<td>Vasculature and cortical cells</td>
<td>–</td>
<td>No</td>
<td>Castro-Rodríguez et al. (2021)</td>
</tr>
<tr>
<td>Medtr3g088460</td>
<td>MtNTRAMP1</td>
<td>Fe²⁺</td>
<td>Rhizobia-infected and noninfected cells</td>
<td>ZII-ZIII</td>
<td>No</td>
<td>Tejada-Jiménez et al. (2015)</td>
</tr>
<tr>
<td>Medtr3g092090</td>
<td>MtYSL3</td>
<td>NA-Fe²⁺?</td>
<td>Endodermal (vasculature) and cortical cells</td>
<td>–</td>
<td>No</td>
<td>Castro-Rodríguez et al. (2020)</td>
</tr>
<tr>
<td>Medtr3g464210</td>
<td>MtMOT1.3</td>
<td>MoO₄²⁻</td>
<td>Rhizobia-infected and noninfected cells</td>
<td>ZII-ZIII</td>
<td>Yes</td>
<td>Tejada-Jiménez et al. (2017)</td>
</tr>
<tr>
<td>Medtr4g013240</td>
<td>MtFPN2</td>
<td>Fe²⁺</td>
<td>Endodermal and parenchyma cells (vasculature); rhizobia-infected and noninfected cells</td>
<td>IZ-early ZII, ZII-early ZIIIs</td>
<td>Yes</td>
<td>Escudero et al. (2020b)</td>
</tr>
<tr>
<td>Medtr4g019870</td>
<td>MtCOPT1</td>
<td>Cu⁺</td>
<td>Rhizobia-infected and noninfected cells</td>
<td>ZII-ZIII</td>
<td>Yes</td>
<td>Senovilla et al. (2018)</td>
</tr>
<tr>
<td>Medtr4g064893</td>
<td>MtMTP2</td>
<td>Zn²⁺</td>
<td>Rhizobia-infected cells</td>
<td>ZII-ZIII</td>
<td>No</td>
<td>León-Medivilla et al. (2018)</td>
</tr>
<tr>
<td>Medtr4g083570</td>
<td>MtZIP6</td>
<td>Zn²⁺</td>
<td>Rhizobia-infected cells</td>
<td>ZII-ZIII</td>
<td>No</td>
<td>Abreu et al. (2017)</td>
</tr>
<tr>
<td>Medtr4g094325</td>
<td>MtVT1L4</td>
<td>Fe²⁺</td>
<td>Rhizobia-infected cells</td>
<td>ZII-ZIII</td>
<td>Yes</td>
<td>Walton et al. (2020)</td>
</tr>
<tr>
<td>Medtr4g094335</td>
<td>MtVT1L8</td>
<td>Fe²⁺</td>
<td>Rhizobia-infected cells</td>
<td>ZII-ZIII</td>
<td>Yes</td>
<td>Walton et al. (2020)</td>
</tr>
<tr>
<td>Medtr8g037170</td>
<td>MtMATE67</td>
<td>Citrate</td>
<td>Apical vasculature cells; rhizobia-infected and noninfected cells</td>
<td>ZII-ZIII</td>
<td>Yes</td>
<td>Kryvoruchko et al. (2018)</td>
</tr>
</tbody>
</table>

Lj, Lotus japonicus; Gm, Glycine max; Mt, Medicago truncatula. Question marks indicate those substrates that have not been confirmed or that it is not fully supported by another publication when more than one exists on the same gene. Nodule zones are indicated for those transporters expressed in indeterminate nodules.

Conclusions

In the last decade, much has been learnt on how iron, copper, zinc, and molybdenum are delivered and used in nodules, and the main delivery routes that they use to participate in symbiotic nitrogen fixation have been identified (summarized in Fig. 2; Table 1). However, the delivery of other transition metals, such as manganese or nickel, is still largely unexplored in spite of the evidence indicating their importance for SNF (Brito et al., 1994; Hood et al., 2017). However, how those nutrients are carried to the transporters, how they are used, and how the whole process is regulated, remain largely unknown. Filling these gaps will provide a necessary step toward engineering nitrogen fixation capabilities in nonlegumes, as ensuring adequate levels of metal delivery is essential. Moreover, the available information will help in the development and selection of legume varieties with improved nitrogen fixation capabilities under prevalent low metal conditions.
This is particularly important in a context of climate change, in which sustainable alternatives to polluting and expensive nitrogen fertilizers must be found. Understanding metal homeostasis in nodules will also be relevant to our understanding of how metals are exchanged in other beneficial plant–microbe partnerships. For instance, the study of copper transport in M. truncatula nodules (Senovilla et al., 2018) led to the identification of a specific copper transporter of arbuscular mycorrhiza (Senovilla et al., 2020), highlighting the close evolutionary relationship between these two symbioses. More broadly, nodules have proven to be an excellent system to study plant metal homeostasis largely avoiding functional redundancy that might mask physiological roles. As improved methods for metal imaging and speciation, metalloproteomics, and targeted metabolomics are developed, the coming decade should deliver a wealth of new data on the molecular bases of transition metal homeostasis in plant–microbe systems.

Acknowledgements

The authors would like to acknowledge Dr M. Lucas (ICA-CSIC), Dr E. Fedorova (Timiryazev Institute of Plant Physiology), and Dr Jorge Rodríguez-Celma (EEAD-CSIC), as well as past and present members of Lab 281 at CBGP (UPM-INIA/CSIC) for some of the discussions leading to this revision. We would also like to apologize to those colleagues whose work we have not been able to fully cite due to space limitations. This work was funded by European Research Council grant ERC-2013-Stg-335284, Ministerio de Economía, Competitividad grants AGL2012-32974, and AGL2015-65866-P grants, and Ministerio de Ciencia, Economía y Competitividad grants AGL2012-32974, and AGL2015-65866-P grants, and Ministerio de Ciencia, Innovación, and Universidades PGC2018-095996-B-100 grant, and Ministerio de Ciencia e Innovación PID2021-124060OB-100 (PI MGG) and by Severo Ochoa Programme for Centres of Excellence in R&D from the Agencia Estatal de Investigación of Spain (grants SEV-2016-0672 and CEX2020-009999-S to CBGP). CN-G and ER-N are supported by Formación de Personal de Investigación fellowships PRE2019-089164 and PRE2018-084895, respectively.

Competing interests

None declared.

Author contributions

The manuscript was conceptualized and written by MG-G and VE. CN-G and ER-N helped in reviewing the literature; JI in organizing the information and structuring it; CE-E was responsible for figures. All authors reviewed and contributed to the text of the manuscript.

ORCID

Carlos Echávarri-Erasun https://orcid.org/0000-0001-8363-5199
Viviana Escudero https://orcid.org/0000-0002-3506-9054
Manuel González-Guerrero https://orcid.org/0000-0001-7334-5286
Juan Imperial https://orcid.org/0000-0002-5002-6458
Cristina Navarro-Gómez https://orcid.org/0000-0002-0548-4206
Elena Rosa-Nuñez https://orcid.org/0009-0007-5114-9429

References

