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Abstract A full-length cDNA sequence putatively encoding
an ATP-binding cassette (ABC) transporter (GintABC1) was
isolated from the extraradical mycelia of the arbuscular
mycorrhizal fungus Glomus intraradices. Bioinformatic
analysis of the sequence indicated that GintABC1 encodes
a 1513 amino acid polypeptide, containing two six-
transmembrane clusters (TMD) intercalated with sequences
characteristics of the nucleotide binding domains (NBD) and
an extra N-terminus extension (TMD0). GintABC1 presents
a predicted TMD0-(TMD-NBD)2 topology, typical of the
multidrug resistance-associated protein subfamily of ABC
transporters. Gene expression analyses revealed no differ-
ence in the expression levels of GintABC1 in the extra- vs
the intraradical mycelia. GintABC1 was up-regulated by Cd
and Cu, but not by Zn, suggesting that this transporter might
be involved in Cu and Cd detoxification. Paraquat, an
oxidative agent, also induced the transcription of GintABC1.
These data suggest that redox changes may be involved in
the transcriptional regulation of GintABC1 by Cd and Cu.

Keywords Arbuscular mycorrhizal fungi .Glomus
intraradices . Heavy metals . ABC transporter . Multidrug
resistance-associated protein . Oxidative stress

Introduction

The ATP-binding cassette (ABC) family of transporters has
a widespread distribution in nature (Higgins 1992), with
multiple representatives in a given genome. For instance,
150 have been described in Arabidopsis thaliana and 30 in
Saccharomyces cerevisiae (Martinoia et al. 2002; Jungwirth
and Kuchler 2006; Verrier et al. 2008). These two facts
highlight the importance these transporters have in biolog-
ical systems and hint at their functional versatility. In fact,
ABC transporters are involved in a stunning variety of
cellular processes, such as maintenance of mitochondrial
function, peroxisome biogenesis, export of Fe/S clusters,
heavy metal detoxification, removal of toxic catabolic
compounds, or pheromone transport, among others (Borst
et al. 1999; Ketchum et al. 2001; Martinoia et al. 2002;
Chen et al. 2007b; Footitt et al. 2007). This is possible due
to the broad range of substrates of the ABC transporters:
ions, nutrients, phospholipids, peptides, and even whole
proteins, in a process that is coupled to the hydrolysis of
ATP (Higgins 1992).

In spite of the broad range of substrates, ABC trans-
porters share the same structural architecture, consisting of
two transmembrane domains (TMDs), each of them
consisting of six helices, and two nucleotide binding
domains (NBDs), responsible for ATP binding and hydro-
lysis (Higgins 1992). The NBDs present two conserved
sequences responsible for ATP binding, Walker A
(GXXGXGK(S/T)) and Walker B (RX6–8hyd4D), which
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are shared with other ATPases (Walker et al. 1982).
Between these two motifs is the signature sequence or
C-loop (LSXGX(K/R)), unique to ABC transporters. The
different subfamilies of ABC transporters differ on how
the NBDs and TMDs are organized. Their arrangement
varies from the multidrug resistance-associated protein
(MRP) subfamily, which presents a single coding frame in
which the organization is (TMD-NBD)2 (Borst et al.
1999), to transporters associated with antigen processing
proteins in which two genes codify for a functional
protein, each with a TMD-NBD arrangement (van Endert
et al. 2002), to bacterial ABCs in which each of the four
elements is codified as a separate coding frame (Davidson
and Chen 2004).

In fungi, the most common ABC transporters are the
so-called full-size ABC transporters, in which the required
arrangement of domains is contained in one polypeptide
chain (Del Sorbo et al. 2000). They are largely confined to
the multidrug resistance (MDR), MRP, and pleiotropic drug
resistance (PDR) protein subfamilies. At the structural level,
members of the MDR and MRP present the characteristic
(TMD-NBD)2 topology, while members of the PDR
subfamily present the reverse topology (NBD-TMD)2.
Moreover, some MRPs present an extra N-terminus
extension (NTE), containing a TMD0 consisting of five
helices and involved in protein sorting (Mason and Michaelis
2002). The diversity of function of these transporters is
manifest not only at the subfamily level but also in individual
members of the subfamily (for a review, see Jungwirth and
Kuchler 2006).

Members of the MRP subfamily transport drug com-
plexes with more soluble products such as glutathione,
taurocholate, or glucosides (Li et al. 1996; Klein et al.
2000; Gerk et al. 2007), and in this form, the drugs are
eliminated from the cytosol. This aspect hints at the
physiological role of MRP transporters, since establishing
complexes with soluble products is one of the main
processes by which lipophilic compounds, such as some
xenobiotics (herbicides, anti-cancer drugs, etc.) or products
from the metabolism, are detoxified (Bock et al. 1987). In
addition, MRP transporters are also involved in heavy
metal tolerance, participating in the transport to the vacuole
of Cu/Cd-glutathione or Cu/Cd-phytochelatin complexes
(Ortiz et al. 1995; Li et al. 1996). Removal of this transport
activity in yeasts results in hypersensitivity to Cd (Wemmie
et al. 1994).

In spite of their importance and abundance, no ABC
transporter has been identified in mycorrhizal fungi to date.
Arbuscular mycorrhizal (AM) fungi are able to tolerate a
wide range of metal concentrations in soils, thereby
protecting plants from metal toxicity. Although a body of
literature exists on the effects of heavy metals on arbuscular
mycorrhiza (Leyval et al. 1997; Meharg 2003; Göhre and

Paszkowski 2006), only a few studies focus on the fungal
side of the symbiosis, and even fewer on the molecular
basis of heavy metal homeostasis in AM fungi (González-
Guerrero et al. 2009). In a recent study using a combination
of transmission electron microscopy and energy-dispersive
X-ray spectroscopy, we showed that upon exposure of the
AM fungus Glomus intraradices to high concentrations of
either Cu, Zn, or Cd, the cytoplasmic concentrations of
heavy metals were kept low, whereas vacuoles had the
highest intracellular concentrations of heavy metals
(González-Guerrero et al. 2008). Accumulation of heavy
metals in the AM fungal vacuoles implies the presence of a
number of heavy metal transporters involved in loading
these organelles. However, to date, only two heavy metal
transporters have been described to some extent in AM
fungi: the cation diffusion facilitator (CDF) Zn transporter
GintZnT1 that might be involved in Zn detoxification in the
fungal vacuole (González-Guerrero et al. 2005) and a
Cu-regulated ZRT/IRT-like protein (ZIP) transporter whose
function remains to be ascertained (Ouziad et al. 2005;
Hildebrandt et al. 2007). In this work, we report the
isolation and expression analysis of GintABC1, the first
ABC transporter gene described to date in AM fungi.
GintABC1 presents an expression pattern consistent with a
role in Cu, Cd, and oxidative stress protection.

Materials and methods

Biological material

G. intraradices monoxenic cultures were established as
described by St-Arnaud et al. (1996). Briefly, a carrot
(Daucus carota L., clone DC2) Ri-T DNA transformed root
was grown together with the AM fungus G. intraradices
Smith & Schenck (DAOM 197198, Biosystematic Research
Center, Ottawa, Canada), in two-compartment Petri dishes.
Cultures were initiated in the “root compartment”, which
contained the minimal medium (“M medium”) described by
Chabot et al. (1992). Fungal hyphae, but not roots, were
allowed to grow over the plastic barrier to the second
compartment (the “hyphal compartment”, HC), which
contained M medium without sucrose (“M-C medium”;
St-Arnaud et al. 1996). Plates were incubated in the dark at
24°C until extraradical hyphae growing in HCs started the
transition from absorptive to sporulative phase (6–8 weeks).

G. intraradices treatments

Different experiments were set up to analyze the effect of
the metals Cu, Cd, and Zn, and also of the oxidative agent
paraquat, on GintABC1 expression in the extraradical
mycelia (ERM) of G. intraradices. Each metal or paraquat
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was applied as a pulse to the M-C medium once the ERM
were well established on it (transition from absorptive to
sporulative phase). CuSO4, CdSO4, ZnSO4, or paraquat
was applied to their respective HCs to obtain final
concentrations of 5 mM Cu, 0.45 mM Cd, 7.5 mM Zn, or
0.5 mM paraquat. This was done by distributing 500 µl of
each filter-sterilized stock solution dropwise, so that evenly
diffusion of the added solutions was ensured. The time
point just before metal/paraquat addition is referred to
“Time 0”. After the pulse, ERM were harvested at time
points 6 h, 12 h, 24 h, and 7 days.

Sample recovery and RNA extraction

ERM from the different HCs were recovered by blending
(5 s high speed, 5 min with occasional low speed pulses)
the culture medium in 10 mM sodium citrate (pH 6) and
collecting the mycelia with a 50-µm sieve under sterile
conditions (Bago et al. 1999). Mycorrhizal carrot roots
were recovered from the RCs with forceps and gently
washed under tap water to eliminate attached extraradical
fungal hyphae and spores. The absence of extraradical
fungal mycelium was verified under a binocular micro-
scope. Mycorrhizal root colonization was confirmed by
visual observation of the fungal structures under a
stereomicroscope after trypan blue staining (Phillips and
Hayman 1970). Samples of ERM or roots were immedi-
ately liquid nitrogen-frozen and stored at −80°C until
used. RNAs were extracted using the RNeasy Plant Mini
Kit (Qiagen, Germantown, MD, USA) following the
manufacturer’s instructions.

Cloning and sequence analysis of GintABC1

A genomic fragment of 917 bp with homology to MRP
transporters was identified in a G. intraradices sequence
database (http://darwin.nmsu.edu/~plammers/glomus; Bago
et al. 2003). The 3′ and 5′ ends were obtained by rapid
amplification of cDNA ends (RACE) using the SMART
RACE cDNA Amplification kit (Clontech, PaloAlto, CA,
USA), the GintABC1 specific primers ABC1-A (for the
3′ end) 5′-AGAGATAGAGAAACAAGTCAACCTG-3′ or
ABC1-B (for the 5′ end) 5′-TAATCATAATACCCACAC
CAGCATA-3′, and 1 µg total RNA from ERM grown
under standard conditions in compartmented plates. The
amplified cDNAs were cloned in the pYES2.1 TOPO TA
vector (Invitrogen, Carlsbad, CA, USA).

Nucleotide sequences were determined by Taq polymer-
ase cycle sequencing by using an automated DNA
sequencer (Perkin-Elmer ABI Prism 373). Computer
database comparisons were performed using BLAST
algorithm (Altschul et al. 1990) and computer translation
by using the Translate tool from EXPASY Molecular

Biology Server. Amino acid sequence comparisons were
made with the BESTFIT program of the Genetics Computer
Group (Madison, WI, USA). Multiple sequence alignments
of translated gene sequences were carried out with the
program CLUSTALW (version 1.5; Thompson et al. 1994).
The Kimura two-parameter method was used to estimate
distances, and the phylogenetic analysis was performed
by the neighbor-joining method by using PHYLIP
(Felstein 1993). The relative support of the different
clades was determined based upon 100 bootstrap trees.
The phylogenetic tree was displayed with the help of the
TREEVIEW program (Page 1996). Predicted topology of
the protein was obtained with the program TM-pred
(Hofmann and Stoffel 1993).

Analysis of gene expression

Gene expression was studied by quantitative real-time
reverse transcription-polymerase chain reaction (RT-PCR)
using iCycler iQ (Biorad, Hercules, CA, USA). cDNAs
were obtained from 1 µg of DNase-treated total RNA from
the different treatments in a 20-µl reaction containing 200
units of SuperScript II reverse transcriptase (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s
protocol. The primer set used to amplify GintABC1 in the
synthesized cDNAs were ABC1-A and ABC1-B whose
specificity for amplification of G. intraradices nucleic acids
was confirmed by performing conventional RT-PCR on
RNA from G. intraradices ERM and from non-mycorrhizal
carrot roots. Each 25 µl reaction contained 1 µl of a 1:10
dilution of the synthesized cDNA, 200 mM dNTPs,
200 nM each primer, 3 mM MgCl2, 2.5 µl 1×SyBR Green
(Molecular Probes, Eugene, OR, USA), and 0.5 U Platinum
Taq DNA Polymerase (Invitrogen, Carlsbad, CA, USA) in
1×PCR buffer (20 mM Tris–HCl pH 8.4, 50 mM KCl).

The PCR program consisted of a 5-min incubation at
95°C to activate the hot-start recombinant Taq DNA
polymerase, followed by 35 cycles of 30 s at 95°C, 45 s
at 55°C, and 45 s at 70°C, where the fluorescence signal
was measured. The specificity of the PCR amplification
procedure was checked with a heat dissociation protocol
(from 70°C to 100°C) after the final cycle of the PCR. The
efficiency of the primer set was evaluated by performing
real-time PCR on several dilutions of plasmid DNA. The
results obtained for the different treatments were standard-
ized to the 18S rRNA levels, which were amplified with the
primers: RMF: 5′-TGTTAATAAAAATCGGTGCGT
TGC-3′ and RMR: 5′-AAAACGCAAATGATCAACC
GGAC-3′. Real-time PCR determinations were carried out
with RNA extracted from three independent biological
samples, with the threshold cycle (Ct) determined in
triplicate. The relative levels of transcription were
calculated by using the 2�ΔΔct method (Livak and
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Schmittgen 2001). Data were subjected to ANOVA and,
when appropriate, to the Tukey’s honestly significant
difference test (P<0.05). In all RT-PCR reactions, a non-
RT control was used to detect any possible DNA
contamination.

Results

A 917-bp DNA fragment with homology to MRP trans-
porters was identified by exploring a G. intraradices
sequence database (clone Bgl53-T7). This fragment com-
prises at least one intron and two exons. In order to obtain
the complete coding sequence, 3′ and 5′ RACE were
performed in total RNA using exon-specific primers. In
silico translation of the full-length GintABC1 cDNA
revealed an open reading frame encoding a 1513 amino
acid polypeptide with a predicted molecular weight of
172 kDa (Fig. 1a). Comparison with the amino acid
sequence databases showed that it is related to fungal
members of the MRP subfamily of ABC transporters,
presenting the highest degree of homology to the yeast
cadmium factor 1 protein (ycf1) from S. cerevisiae
(Szczypka et al. 1994), with 44% identity and 61%
similarity.

In silico analysis of the protein topology reveals 17
TMDs in the deduced amino acid sequence of GintABC1,
with a predicted (TMD-NBD)2 topology, each TMD
consisting of six helices, and a TMD0 domain consisting
of five helices (Fig. 1b). This domain architecture is typical
of ABC transporters belonging to the MRP subfamily, such
as the ycf1 from S. cerevisiae. The NBDs present the
classical Walker A and B and the C-loop motives, at
positions 646, 748, and 736, respectively, for NBD1 and at
positions 1293, 1408, and 1396, respectively, for NBD2.
The only difference with the common signature motives of
MRP transporters refers to the C-loop motif of NBD2.
Instead of the residue leucine of the common LSXGX(K/R)
motif, there is a phenylalanine.

A phylogenetic analysis of GintABC1 with representa-
tive members of the MDR, MRP, and PDR subfamilies of
fungal ABC transporters clearly demonstrates that Gin-
tABC1 is grouped into the MRP subfamily (Fig. 2). Thus,
GintABC1 can be classified as a new member of this
subfamily.

To get some insight into the putative roles of GintABC1
in G. intraradices, its expression profile was analyzed by
real-time RT-PCR. Firstly, to determine whether GintABC1,
as other members of the MRP subfamily, is regulated by
heavy metals, its gene expression was assessed in ERM
which had been exposed for different periods of time to Cu,
Cd, or Zn. The regulation pattern varies among the three
metals (Fig. 3). While the expression level of GintABC1

steadily increases along the 7-day period after Cd addition,
it reaches a nearly fourfold induction 12 h after Cu
exposure, progressively decreasing thereafter. On the
contrary, GintABC1 expression was not affected by the
supplementation with Zn.

Given that MRP transporters have also been reported to
be regulated by oxidative stress (Maher et al. 2007), the
effect of paraquat, an intracellular superoxide generator, on
GintABC1 expression was also analyzed. As it is shown in
Fig. 4, the addition of 500 µM paraquat to G. intraradices
ERM induces an increase in GintABC1 transcription levels
at all time points analyzed. A twofold induction was
detected 12 and 24 h after the addition of paraquat, and a
threefold up-regulation was observed after 7 days exposure.

Since some fungal ABC transporters, such as the
vacuolar MRP-like transporter1 from Candida albicans,
are involved in fungal virulence (Theiss et al. 2002), to
learn more about the putative roles of GintABC1, we
investigated whether it was differentially expressed in the
ERM and the structures the fungus develops inside the
roots. This was done by analyzing GintABC1 expression on
RNA from ERM developed in the HC of the split-Petri
dishes and on RNA from the G. intraradices-colonized
carrot roots developed in the root compartment, from which
ERM had been removed under the dissection microscope.
While no transcripts were detected in non-mycorrhizal
carrot roots, GintABC1 transcripts were detected in the
ERM and in the carrot mycorrhizal roots lacking ERM,
with no significant differences between the expression
levels in the intra- and extraradical fungal structures
(Fig. 5).

Discussion

At low levels, heavy metal cations are essential for the
completion of multiple biological processes, such as
oxidative respiration or free radical control (Fraústro da
Silva and Williams 2001). However, at slightly higher
levels they have deleterious effects, such as promoting
oxidative damage to membranes or DNA. For this reason,
living beings have developed a complex system to control
and maintain heavy metal homeostasis, which involves
metal transporters, metallochaperones, and metallothioneins
(Cherian and Chan 1993; O’Halloran and Culotta 2000;
Eide 2004; Argüello et al. 2007). Here, we describe
GintABC1, a G. intraradices gene encoding an ABC
transporter, whose gene product might be involved in Cd
and Cu tolerance.

AM fungi are able to withstand high levels of Cu, Cd,
and Zn, both when growing in high-metal soils in natural or
polluted environments and also when developing in in vitro
cultures (Pawlowska and Charvat 2004; Chen et al. 2007a).
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Energy-dispersive X-ray spectroscopy of heavy metal-treated
AM fungi indicates that once the metals enter the cytosol,
they are preferentially accumulated in vacuoles, what would
involve the action of specific transporters (González-
Guerrero et al. 2008, 2009). To date, only two heavy metal
transporters from AM fungi are known, the CDF transporter
from G. intraradices GintZnT1 and a ZIP transporter from

the same fungus (González-Guerrero et al. 2005; Ouziad et
al. 2005). However, no member of these two families has
been shown to be able to transport Cu, although an effect of
Cu in gene expression of the ZIP transporter has been
indicated (Hildebrandt et al. 2007).

GintABC1 represents the first ABC transporter described
so far in an AM fungus. Bioinformatic analysis of the
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TMD0 TMD1 TMD2

NBD1

NBD2

a

b

NTE

Fig. 1 a Amino acid sequence
of GintABC1. Underlined ami-
no acids indicate predicted
transmembrane domains.
Continuous line boxes indicate
the position of the Walker A and
B motives. Discontinuous line
boxes indicate the position
of the C-loops. b Topology
model of GintABC1
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GintABC1 amino acid sequence classifies this protein in
the MRP subfamily of ABC transporters. The predicted
secondary structure further supports GintABC1 as a
member of the MRP subfamily consisting of two six-
transmembrane clusters resembling the TMDs, intercalated
with sequences characteristics of the NBDs containing the
Walker A and B motives and a C-loop situated between the
two Walker boxes. The Walker motifs in the two NBDs and
the C-loop of NBD1 contain the canonical sequences of
these motifs. However, the C-loop of NBD2 presents a
phenylalanine instead of the critical leucine residue. This
type of C-signature motif is usually called a “degenerated
C-loop”, and it has been previously described for other
ABC transporters (Chen et al. 2004). Particularly, the C-loop
of NBD2 in GintABC1 (FSQGQR) is identical to the one of
another ABC transporter, the sulfonylurea receptor (SUR1).
Based on this asymmetry, it has been proposed that one
NBD in the complex hydrolyses ATP to provide the energy
for translocation, while the other one only binds ATP as a

regulatory domain (Yang et al. 2003). GintABC1 sequence
also presents an NTE containing a transmembrane TMD0
domain consisting of five helices, as some MRPs, such as S.
cerevisiae ycf1 do (Mason and Michaelis 2002).

The similarity between ycf1 and GintABC1 and the fact
that ycf1 plays a key role in heavy metal detoxification in S.
cerevisiae suggest a role for GintABC1 in heavy metal
tolerance. Our gene expression studies hint at GintABC1
playing a role in Cu and Cd tolerance. After a short
exposure to Cd or Cu, GintABC1 is up-regulated, with
higher expression levels reached in the Cd treatments.
However, Zn did not induce its transcription. This expres-
sion pattern is consistent with that of the AtMRP3
transporter of A. thaliana implicated in Cd tolerance
(Tommasini et al. 1998). AtMRP3 transcription was shown
to be strongly induced by Cu and Cd, but not by Zn (Bovet
et al. 2003; Zientara et al. 2009). Up-regulation by Cd has
been also reported for the AtMRP6 of A. thaliana and for
the CrMRP2 transporter of Chlamydomonas reinhardtii,

10
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ScYOR1 AnAtrDAfumdr1

SpMam1
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MgAtr1
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ScPDR15

ScPDR5

CaCDR3

CaCDR2
CaCDR1

CaCDR4
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PDR

MRP
MDR

Fig. 2 Unrooted phylogenetic tree of fungal full-size ATP-binding
cassette (ABC) transporters. Sequences were obtained from GenBank
with the following accession numbers: Aspergillus flavus (Aflmdr1:
U62931), Aspergillus fumigatus (Afumdr1: U62934), Aspergillus
nidulans (AnAtrA: Z68904; AnAtrB: Z68905; AnAtrC: AF071410;
AnAtrC2: AF082072; AnAtrD: AF071411), Botryotina fuckeliana
(BcatrA: Z68906; BcatrB: AJ006217); Candida albicans (CaCDR1:
X77589; CaCDR2: U63812; CaCDR3: U89714; CaCDR4:

AF044921; CaMLT1: AF110027), Glomus intraradices (GintABC1:
GQ249346), Magnaporthe grisea (MgABC1: AF032443), Mycos-
phaerella graminicola (Mgatr1: AJ243112; Mgatr2: AJ243113),
Penicillium digitatum (PdPMR1: AB010442), Saccharomyces cerevi-
siae (ScYCF1: Z48179; ScBAT1: Z73153; ScYOR1: Z73066;
ScSET6: Z28209; ScPDR5: L19922; ScPDR12: U39205; ScPDR15:
U32274; ScSNQ2: X66732), and Schizosaccharomyces pombe
(SpMam1: U66305; Spbfr1: S76267; Sppmd1: D10695)
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both involved in Cd transport and detoxification (Wang and
Wu 2006; Gaillard et al. 2008). Increased transcript levels
of MRP transporters in the presence of high Cu concen-
trations suggest a role for these transporters in Cu
detoxification; however, their Cu transporting activity has
not been yet demonstrated. In S. cerevisiae, deletion of
Ycf1 revealed that this protein was not required for Cu
tolerance (Szczypka et al. 1994); however, growth of the

Δycf1 mutant cells in the presence of high Cu concen-
trations might be due to the action of other transporters and
cellular detoxification mechanisms.

GintABC1 induction by Cd and Cu follows a pattern
similar to that of Cd and Cu accumulation in the vacuoles
of G. intraradices when supplemented with these metals
(González-Guerrero et al. 2008). These data suggest that in
G. intraradices, like in other eukaryotes, the MRP
transporter encoded by GintABC1 might play a key role
in Cd and Cu detoxification. Given that Cu is an active
redox metal that induces oxidative stress in G. intraradices
(González-Guerrero et al. 2007; Benabdellah et al. 2009)
and that transcription of GintABC1 is induced by oxidative
stress, up-regulation of GintABC1 expression in the
presence of Cu might be also due to the oxidative response
elicited by Cu.

Currently, substrate specificity for most of the MRPs
is still missing. There is evidence that the S. cerevisiae
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Ycf1 transports across the vacuolar membrane bis-
glutathione-Cd complexes (Li et al. 1997), while C.
reinhardtii CrMRP2 transporter transports heavy metal-
phytochelatin complexes (Wang and Wu 2006). Given the
higher similarity of GintABC1 to Ycf1 than to CrMRP2
(61% vs 44% similarity), it is tempting to speculate that
in G. intraradices, metals might be detoxified by
complexation with glutathione and translocation of the
metal-glutathione2 complexes into vacuoles. However,
further studies are needed to determine the substrates
transported by GintABC1.

Transcriptional regulation by oxidative stress is a
common feature of MRP transporters in mammals and
yeast (Rebbeor et al. 2002; Maher et al. 2007). Given the
wide range of processes involved in oxidative stress
responses, we can only speculate about the physiological
role of GintABC1 in free radical control. One possibility is
that the depletion of reduced glutathione caused by free
radicals might be sensed as an accumulation of glutathione
complexes that need to be exported. Alternatively, given the
broad range of substrates that MRP can transport oxidative
stress might result in the accumulation of a damaging
molecule which, after conjugation, is detoxified by Gin-
tABC1. Interestingly, it has been observed that oxidative
stress and heavy metals are able to induce the expression of
glutathione-S-transferases (Dixon et al. 2002; Waschke et
al. 2006), enzymes which are responsible for glutathione
conjugation. However, further experiments, such as deter-
mining substrate specificity and subcellular localization of
GintABC1, are needed to define the specific role of this
ABC transporter in oxidative stress protection and heavy
metal homeostasis in G. intraradices.

In summary, in the present study, we report that
GintABC1, the first MRP transporter identified in a
mycorrhizal fungus, might play a key role in the protection
against Cu and Cd toxicity. Our results also suggest that
GintABC1 is involved in the control of the redox status of
the ERM of G. intraradices. However, further studies are
needed to fully understand the role of GintABC1 in AM
fungi and to assess the role of this transporter in the
adaptation to soils with high levels of Cu or Cd.
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