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Copper (Cu+) transport ATPases are characterized by cytoplasmic metal-binding repeats. Using cryo-elec-
tron microscopy (cryo-EM) of functionally intact Cu+-ATPases and high-resolution structures of isolated
domains, Wu et al. (2008) produced a model that explains how Cu+ binding to cytoplasmic sites controls
the enzyme transport rate.
Copper transport ATPases are members

of the P-type ATPase superfamily of

transmembrane proteins. These are re-

sponsible for creating ion gradients

across the biological membranes at the

expense of ATP hydrolysis (Axelsen and

Palmgren, 1998). Their relevance is high-

lighted, for instance, by phenotypes ob-

served for the Menkes’ and Wilson’s

diseases, in which patients carry muta-

tions in the corresponding genes. Cu+-

ATPases show significant functional and

structural differences from other P-type

ATPases: (1) The Cu+ substrate accesses

the transmembrane transport sites bound

to specific chaperones (González-Guer-

rero and Argüello, 2008); (2) They present

a reduced number of transmembrane

segments in a singular arrangement; and

(3) They have 1–6 cytoplasmic metal-

binding domains in their N terminus (N-

MBDs). Although most research on the

molecular aspects of Cu+-ATPases has

focused on the role of N-MBDs, progress

has been limited by the lack of a structural

description of the intact Cu+-ATPase

molecule. The work of Wu et al. reported

in this issue tackles this by providing an

initial atomic representation of a function-

ally complete Cu+-ATPase (Wu et al.,

2008). The proposed structure, placing

the N-MBDs in close contact with cata-

lytic mobile domains, supports and inte-

grates the available data into a plausible

model for the self-inhibitory role of N-

MBDs. Moreover, it provides a framework

for postulating testable hypotheses on the

molecular mechanism of Cu+ transport.

The presence of repeated N-MBDs was

detected in early work on P1B-ATPase

sequences, which showed them to be

homologous to soluble Cu+-chaperones

(Lutsenko et al., 1997). Biochemical stud-

ies confirmed their metal-binding capabil-
ity and showed that they exchange Cu+

with specific soluble chaperones. These

observations led to the hypothesis that

N-MBDs might mediate ion transfer from

the chaperone to the transmembrane

metal-binding sites (Huffman and O’Hal-

loran, 2000). However, recent evidence

suggests that N-MBDs are unable to

transfer Cu+ to transport sites, but that it

is the chaperones which upload the ion

directly into membrane translocating sites

(González-Guerrero and Argüello, 2008).

While cell biology studies of the mam-

malian Cu+-ATPases have indicated that

N-MBDs are responsible for Cu+-depen-

dent targeting of these proteins (Lutsenko

et al., 2007), the role of N-MBDs on enzy-

matic (catalytic) function has remained

somewhat controversial. For instance,

the presence of N-MBDs in bacterial and

archaeal proteins suggest a functional

role independent of membrane targeting.

Biochemical analysis of P1B-ATPase mu-

tants in which the metal-binding capabil-

ity was removed from the MBDs indicated

that the enzymes were functional, albeit

with a reduced turnover rate (Argüello

et al., 2007). On the other hand, truncation

of the ATPase, fully removing the N-

MBDs, yielded enzymes with higher en-

zyme turnover (González-Guerrero and

Argüello, 2008). These results suggest

a regulatory/self-inhibitory role for N-

MBDs in controlling the turnover rate of

the enzyme. Such a mechanism would

require the interaction of N-MBDs with

catalytic domains, as suggested by the

early observations by Tsivkovskii et al.

of Cu+-dependent interaction between

N-MBDs and the ATP-binding domain

(Tsivkovskii et al., 2001).

Understanding how Cu+ binding to

N-MBDs controls the transport rate via

domain interaction requires knowing the
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overall architecture and domain organi-

zation of these proteins. Full length

P1B-ATPases have been recalcitrant to

crystallization. However, recently the

high-resolution structures of cytoplasmic

domains have been reported (Argüello

et al., 2007; Lutsenko et al., 2007). Now,

Stokes and coworkers, using a strategy

that has proven successful for various

membrane proteins, combined these

atomic structures with a lower-resolution

model produced by cryo-EM of archaeal

Cu+-dependent PIB ATPase, CopA, tubu-

lar crystals to build pseudoatomic models

of the protein. Interestingly, by comparing

the structure of truncated proteins, the

authors were able to localize the N-MBD,

interacting with the actuator (A) and the

ATP-binding domains. The model not

only agrees with previous data, but pro-

vides an insight into the regulatory mech-

anism. Structures of the Ca2+-ATPase

have shown that a dramatic A-domain ro-

tation couples the ion-binding and cata-

lytic sites during the transport cycle and

that pivoting of the nucleotide-binding

(N)-domain accompanies ATP binding

and phosphoryl transfer (Toyoshima and

Inesi, 2004). Consequently, Stokes and

his collaborators propose that in the ab-

sence of Cu+ (condition in which CopA

structures were obtained) the N-MBD

would restrict A-domain and N-domain

movement. Upon binding Cu+, the N-

MBDs would be displaced and thus, allow

for the required motions of the catalytic

domains. We think that it is quite likely

that the N-MBDs mainly prevent the rota-

tion of A-domain associated with gate

opening and metal release. This rate-limit-

ing step is affected (slowed down) when

Cu+-loading of N-MBDs is prevented by

mutations of metal coordinating cysteine

residues (Argüello et al., 2007). This can
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be visualized as the N-MBDs acting as

a mechanical brake of the transporting

machinery by physically restricting the

rate-limiting movement.

The described model certainly leaves

several structural questions unanswered.

How, or where, does the Cu+-loaded

chaperone interact with the ATPase?

Can the arrangement of transmembrane

segments be better defined? How are

multiple N-MBDs accommodated in the

structure? Interestingly, these issues are

within the reach of cryo-EM approaches.
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Background
All life depends on the accurate distribu-

tion of duplicated DNA during cell divi-

sion. In eukaryotic cells, this process is

carried out by an integrated molecular

machine, the mitotic spindle, named in

the 1800s for its similarity to a part of the

spinning wheel from that time. Beyond

its shape, however, the mitotic spindle

bears little resemblance to its yarn-spin-

ning namesake. It has four key compo-

nents, each a fascinating molecular ma-

chine in its own right (Figure 1A): (1) the

replicated chromosomes, or sister chro-

matids, which are held together in pairs

until the spindle is fully assembled; (2)

the spindle poles, which organize the

microtubules; (3) the microtubule fibers,

which extend from the spindle poles;

and (4) the kinetochores, specialized

structures on each chromosome where

the microtubules attach.

Kinetochores form a bridge between

the chromosomes and the microtubule

fibers, and they are at the nexus of the
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As in the case of the role of N-MBDs,

addressing these would have a significant

impact in the field.

REFERENCES
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ponent of the kinetochore, which lin
hed an atomic-level structure of the c
eration and control of chromosome

mitotic process (for review, see Cheese-

man and Desai, 2008). Kinetochores are

able to convert the energy from microtu-

bule depolymerization into chromosome

movement. The mitotic checkpoint, a pro-

cess which prevents premature chroma-

tid separation, acts through the kineto-

chore (for a review, see Musacchio and

Salmon, 2007). The checkpoint can de-

tect even a single unattached kinetochore

and delay chromatid separation until all

are attached. In response to incorrectly

attached kinetochores, the checkpoint

also induces corrective detachment. As

expected for a molecular machine with

so many functions, the kinetochore is a

focal point for regulation, which occurs

through phosphorylation, sumoylation,

and methylation of its components. Un-

covering how the kinetochore works is

central to understanding mitosis.

Spindle microtubules are constantly

growing and shortening, and biologists

have long wondered how kinetochores

stay attached to these dynamic filaments.
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ks chromosomes to microtubules.
omplex with implications for kinet-

movements during mitosis.

Time-lapse movies show that kineto-

chores and their associated chromo-

somes move continually back-and-forth

as the microtubules polymerize and

depolymerize under their grip. Several

models explaining this dynamic attach-

ment proposed in the 1980s (Hill, 1985;

Koshland et al., 1988) are becoming

directly testable. Through a combination

of genetics and biochemistry, we now

know that the kinetochore is a collection

of at least 60 proteins arranged into

subcomplexes (Cheeseman and Desai,

2008). An increasing number of these

subcomplexes can be produced in re-

combinant form in large quantities, paving

the way for biochemical and biophysical

interrogation, for structural studies, and

possibly for complete reconstitution of

active kinetochores from pure compo-

nents. While a few EM structures are

available (Davis and Wordeman, 2007;

Wang et al., 2007), atomic-level structural

information has been challenging to ac-

quire. Now, in an important advance,
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